魏雲峰

發布者:陳碩發布時間:2023-03-01浏覽次數:1915



基本情況:

魏雲峰 中共黨員

最後學位:博士

崗位職稱:副教授

研究領域:非線性偏微分方程及其應用

通訊地址:南京市浦口區雨山西路86

郵  編:211815

Email: weiyunfeng@nau.edu.cn

教育經曆:

2016.09-2020.09 工學博士 河海大學 專業:現代力學數學基礎, 導師:陳才生教授;  

2005.9-2008.04  理學碩士 東南大學 專業:應用數學, 導師:王明新教授;  

2001.09-2005.06 理學學士 阜陽師範學院 專業:數學與應用數學。

工作經曆:

2021.07-至今 bat365登录网站Welcome入口副教授

2011.05-2021.07 bat365登录网站Welcome入口講師

2008.05-2011.05 bat365登录网站Welcome入口助教

教學情況:

1.教學課程:高等數學、微積分、線性代數、概率論與數理統計等。

2.教學獲獎:獲bat365登录网站Welcome入口統計與數據科學學院第一屆青年教師教學競賽三等獎。

3.指導學生獲獎:多次參與指導學生參加學校、江蘇省高等學校高等數學競賽并獲獎。

科研情況:

1.代表性期刊論文:

[1]. Yunfeng Wei*, Hongwei Yang, Hongwang Yu, Rui Hu. Stable solutions to quasilinear Schrödinger equations of Lane-Emden type with a parameter. Math. Methods Appl. Sci. 44 (2021), no. 13, 9987-9997. (SCI)

[2]. Yunfeng Wei*, Caisheng Chen, Zonghu Xiu, Hongwang Yu,Nonexistence of positive solutions to a class of generalized quasilinear Schrödinger equations. Appl. Math.Lett. 121 (2021), Paper No. 107470, 6 pp.  (SCI)

[3]. Yunfeng Wei*, Hongwei Yang, Hongwang Yu. On stable solutions of the weighted Lane-Emden equation involving Grushin operator. AIMS Math. 6 (2021), no. 3, 2623-2635. (SCI)

[4]. Yunfeng Wei*, Hongwei Yang, Hongwang Yu. Stable weak solutions to weighted Kirchhoff equations of Lane-Emden type. Adv. Difference Equ. 2021, Paper No. 27, 14 pp.(SCI)

[5]. Yunfeng Wei*, Caisheng Chen, Hongwei Yang, Hongwang Yu. Existence of weak solutions for quasilinear Schrödinger equations with a parameter. Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 41, 20 pp. (SCI)

[6].Yunfeng Wei*, Caisheng Chen, Hongwei Yang. Liouville-type theorem for Kirchhoff equations involving Grushin operators. Bound. Value Probl. 2020, Paper No. 13, 18 pp. (SCI)

[7].Yunfeng Wei*, Caisheng Chen, Qiang Chen, Hongwei Yang. Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators. Math. Methods Appl. Sci. 2020, 43(1), 320-333. (SCI)

[8]. Yunfeng Wei*, Caisheng Chen, Hongwei Yang. Liouville-type theorem for stable solutions of the Kirchhoff equation with negative exponent. Journal of Mathematical Research with Applications. 2020, 40(4), 397-404 (CSCD)

[9]. Yunfeng Wei*, Caisheng Chen, Hongxue Song, Hongwei Yang. Liouville-type theorems for stable solutions of Kirchhoff equations with exponential and superlinear nonlinearities. Complex Var. Elliptic Equ. 2019, 64(8), 1297-1309. (SCI)

[10]. Yunfeng Wei*, Caisheng Chen, Hongwei Yang, Hongxue Song. Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions. Bound. Value Probl. 2018, Paper No. 78, 18 pp. (SCI)

[11]. Qiang Chen*, Caisheng Chen, Yunfeng Wei, Yanlin Shi. Multiple Solutions for a Class of System of (p, q)-Kirchhoff Equations in R^N. J. Dyn. Control Syst. 27(2021), no. 3, 557-572. (SCI)

[12]. Zonghu Xiu*, Caisheng Chen, Yunfeng Wei. Nonexistence of solutions for quasilinear Schrödinger equations in R^N. Appl. Math. Lett. 2020, 105, 106310.(SCI)

[13].Hongxue Song*, Yunfeng Wei. Multiple solutions for quasilinear nonhomogeneous elliptic equations with a parameter. (Chinese) Acta Math. Sci. Ser. A (Chin. Ed.) 2019, 39(2), 286-296. (CSCD)

[14]. Caisheng Chen*, Yunfeng Wei. Existence, nonexistence, and multiple results for the fractional p-Kirchhoff-type equation in R^N. Mediterr. J. Math. 2016,13(6), 5077-5091. (SCI)

[15]. Minxing Wang*, Yunfeng Wei. Blow-up properties for a degenerate parabolic system with nonlinear localized sources. J. Math. Anal. Appl. 343 (2008), no. 2, 621-635. (SCI)

[16]. 魏雲峰*, 帶非局部源退化奇異抛物方程組的爆破,《阜陽師範學院學報:自然科學版》,2010, (3), 18-22.

[17]. 魏雲峰*, 帶非局部源退化奇異抛物方程組的一緻爆破模式, 《淮北煤炭師範學院學報:自然科學版》,2010, (4), 10-14.

[18].魏雲峰*, 帶有非局部源的退化奇異半線性抛物方程組的爆破,《南京審計學院學報》, 2009,(1),81-85.

2. 主持及參與項目情況:

[1]. 全空間上幾類拟線性橢圓型方程解的定性研究,19KJD100002, 江蘇省高校自然科學研究面上項目,2009/09-2020/12, 主持。

[2].拟線性薛定谔方程及其相關問題研究, 2021SZJJ004, bat365登录网站Welcome入口“數字經濟”應急管理項目,2021/12-2023/12,主持。

[3].随機多層動态網絡的有限時間穩定性分析與優化控制, 62176127,國家自然科學基金面上項目,2022/01-2025/12,參與。

[4].基于場景需求的拉格朗日相幹結構的歐拉算法研究,BK20211293,江蘇省自然科學基金面上項目,2021/07-2024/06,參與。

[5].具有延遲巨額理賠風險的保險公司破産概率近似估計與最優投資策略研究 ,20YJCZH034,教育部人文社會科學基金項目,2020/01-2022/12,參與。